metabelian, soluble, monomial, A-group
Aliases: C32⋊2C16, (C3×C6).2C8, (C3×C12).1C4, C2.(C32⋊2C8), C4.2(C32⋊C4), C32⋊4C8.3C2, SmallGroup(144,51)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊2C16 |
C32 — C32⋊2C16 |
Generators and relations for C32⋊2C16
G = < a,b,c | a3=b3=c16=1, cbc-1=ab=ba, cac-1=a-1b >
Character table of C32⋊2C16
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 4 | 4 | 1 | 1 | 4 | 4 | 9 | 9 | 9 | 9 | 4 | 4 | 4 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | linear of order 8 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | linear of order 8 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | linear of order 8 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | linear of order 8 |
ρ9 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ1614 | ζ166 | ζ1610 | ζ162 | -i | -i | i | i | ζ169 | ζ1615 | ζ163 | ζ1611 | ζ165 | ζ1613 | ζ16 | ζ167 | linear of order 16 |
ρ10 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ1610 | ζ162 | ζ1614 | ζ166 | i | i | -i | -i | ζ163 | ζ165 | ζ16 | ζ169 | ζ167 | ζ1615 | ζ1611 | ζ1613 | linear of order 16 |
ρ11 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ1610 | ζ162 | ζ1614 | ζ166 | i | i | -i | -i | ζ1611 | ζ1613 | ζ169 | ζ16 | ζ1615 | ζ167 | ζ163 | ζ165 | linear of order 16 |
ρ12 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ1614 | ζ166 | ζ1610 | ζ162 | -i | -i | i | i | ζ16 | ζ167 | ζ1611 | ζ163 | ζ1613 | ζ165 | ζ169 | ζ1615 | linear of order 16 |
ρ13 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ162 | ζ1610 | ζ166 | ζ1614 | i | i | -i | -i | ζ167 | ζ16 | ζ1613 | ζ165 | ζ1611 | ζ163 | ζ1615 | ζ169 | linear of order 16 |
ρ14 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ166 | ζ1614 | ζ162 | ζ1610 | -i | -i | i | i | ζ165 | ζ163 | ζ167 | ζ1615 | ζ16 | ζ169 | ζ1613 | ζ1611 | linear of order 16 |
ρ15 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ162 | ζ1610 | ζ166 | ζ1614 | i | i | -i | -i | ζ1615 | ζ169 | ζ165 | ζ1613 | ζ163 | ζ1611 | ζ167 | ζ16 | linear of order 16 |
ρ16 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ166 | ζ1614 | ζ162 | ζ1610 | -i | -i | i | i | ζ1613 | ζ1611 | ζ1615 | ζ167 | ζ169 | ζ16 | ζ165 | ζ163 | linear of order 16 |
ρ17 | 4 | 4 | -2 | 1 | 4 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ18 | 4 | 4 | 1 | -2 | 4 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ19 | 4 | 4 | 1 | -2 | -4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ20 | 4 | 4 | -2 | 1 | -4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ21 | 4 | -4 | -2 | 1 | 4i | -4i | -1 | 2 | 0 | 0 | 0 | 0 | 2i | -i | i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | -2 | 1 | -4i | 4i | -1 | 2 | 0 | 0 | 0 | 0 | -2i | i | -i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 1 | -2 | -4i | 4i | 2 | -1 | 0 | 0 | 0 | 0 | i | -2i | 2i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 1 | -2 | 4i | -4i | 2 | -1 | 0 | 0 | 0 | 0 | -i | 2i | -2i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(2 30 48)(4 34 32)(6 18 36)(8 38 20)(10 22 40)(12 42 24)(14 26 44)(16 46 28)
(1 29 47)(2 30 48)(3 33 31)(4 34 32)(5 17 35)(6 18 36)(7 37 19)(8 38 20)(9 21 39)(10 22 40)(11 41 23)(12 42 24)(13 25 43)(14 26 44)(15 45 27)(16 46 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (2,30,48)(4,34,32)(6,18,36)(8,38,20)(10,22,40)(12,42,24)(14,26,44)(16,46,28), (1,29,47)(2,30,48)(3,33,31)(4,34,32)(5,17,35)(6,18,36)(7,37,19)(8,38,20)(9,21,39)(10,22,40)(11,41,23)(12,42,24)(13,25,43)(14,26,44)(15,45,27)(16,46,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;
G:=Group( (2,30,48)(4,34,32)(6,18,36)(8,38,20)(10,22,40)(12,42,24)(14,26,44)(16,46,28), (1,29,47)(2,30,48)(3,33,31)(4,34,32)(5,17,35)(6,18,36)(7,37,19)(8,38,20)(9,21,39)(10,22,40)(11,41,23)(12,42,24)(13,25,43)(14,26,44)(15,45,27)(16,46,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(2,30,48),(4,34,32),(6,18,36),(8,38,20),(10,22,40),(12,42,24),(14,26,44),(16,46,28)], [(1,29,47),(2,30,48),(3,33,31),(4,34,32),(5,17,35),(6,18,36),(7,37,19),(8,38,20),(9,21,39),(10,22,40),(11,41,23),(12,42,24),(13,25,43),(14,26,44),(15,45,27),(16,46,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])
C32⋊2C16 is a maximal subgroup of
C32⋊C32 C32⋊D16 C32⋊SD32 C32⋊Q32 C3⋊S3⋊3C16 C32⋊3M5(2) C62.4C8 C33⋊4C16
C32⋊2C16 is a maximal quotient of
C32⋊2C32 He3⋊2C16 C33⋊4C16
Matrix representation of C32⋊2C16 ►in GL4(𝔽5) generated by
2 | 0 | 2 | 0 |
0 | 1 | 0 | 4 |
4 | 0 | 2 | 0 |
0 | 3 | 0 | 3 |
1 | 0 | 0 | 0 |
0 | 3 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 2 | 0 | 1 |
0 | 3 | 0 | 3 |
1 | 0 | 4 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
G:=sub<GL(4,GF(5))| [2,0,4,0,0,1,0,3,2,0,2,0,0,4,0,3],[1,0,0,0,0,3,0,2,0,0,1,0,0,1,0,1],[0,1,0,0,3,0,3,0,0,4,0,3,3,0,0,0] >;
C32⋊2C16 in GAP, Magma, Sage, TeX
C_3^2\rtimes_2C_{16}
% in TeX
G:=Group("C3^2:2C16");
// GroupNames label
G:=SmallGroup(144,51);
// by ID
G=gap.SmallGroup(144,51);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,12,31,50,3364,490,4613,1739]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^16=1,c*b*c^-1=a*b=b*a,c*a*c^-1=a^-1*b>;
// generators/relations
Export
Subgroup lattice of C32⋊2C16 in TeX
Character table of C32⋊2C16 in TeX